L_1 operator and Gauss map of quadric surfaces
نویسندگان
چکیده مقاله:
The quadrics are all surfaces that can be expressed as a second degree polynomialin x, y and z. We study the Gauss map G of quadric surfaces in the 3-dimensional Euclidean space R^3 with respect to the so called L_1 operator ( Cheng-Yau operator □) acting on the smooth functions defined on the surfaces. For any smooth functions f defined on the surfaces, L_f=tr(P_1o hessf), where P_1 is the1-th Newton transformation associated to the second fundamental form ofthe surface and hessf denotes the self-adjoint linear operator metrically equivalent to the Hessian of, L_1G=(L_1G_1, L_1G_2, L_1G_3), G=(G_1, G_2, G_3). As a result, we establish the classification theorem that the only quadric surfaces with Gauss map G satisfying L_1G=AG for some 3×3 matrix A are the spheres and flat ones. Furthermore, the spheres are the only compact quadric surfaces with Gauss map G satisfying L_1G=AG for some 3×3 matrix A.
منابع مشابه
Hyperbolic surfaces of $L_1$-2-type
In this paper, we show that an $L_1$-2-type surface in the three-dimensional hyperbolic space $H^3subset R^4_1$ either is an open piece of a standard Riemannian product $ H^1(-sqrt{1+r^2})times S^{1}(r)$, or it has non constant mean curvature, non constant Gaussian curvature, and non constant principal curvatures.
متن کاملGauss map computation for free-form surfaces
The Gauss map of a smooth doubly{curved surface characterizes the range of variation of the surface normal as an area on the unit sphere. An algorithm to approximate the Gauss map boundary to any desired accuracy is presented, in the context of a tensor{product polynomial surface patch, r(u;v) for (u; v) 2 0; 1 ] 0; 1 ]. Boundary segments of the Gauss map correspond to variations of the normal ...
متن کاملHelicoidal Surfaces and Their Gauss Map in Minkowski 3-space
The helicoidal surface is a generalization of rotation surface in a Minkowski space. We study helicoidal surfaces in a Minkowski 3-space in terms of their Gauss map and provide some examples of new classes of helicoidal surfaces with constant mean curvature in a Minkowski 3-space.
متن کاملOn Quadric Surfaces
We study the functional codes C2(X) defined on projective varieties X , in the case where X ⊂ P is a 1-degenerate quadric or a non-degenerate quadric (hyperbolic or elliptic). We find the minimum distance of these codes, the second weight, and the third weight. We also show the geometrical structure of the first weight and second weight codewords. One result states that the codes C2(X) defined ...
متن کاملSkew Loops and Quadric Surfaces
A skew loop is a closed curve without parallel tangent lines. We prove: The only complete surfaces in R with a point of positive curvature and no skew loops are the quadrics. In particular: Ellipsoids are the only closed surfaces without skew loops. Our efforts also yield results about skew loops on cylinders and positively curved surfaces.
متن کاملThe Gauss Map of Minimal Surfaces in R
In this paper, we prove effective estimates for the number of exceptional values and the totally ramified value number for the Gauss map of pseudo-algebraic minimal surfaces in Euclidean four-space and give a kind of unicity theorem.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 20
صفحات 81- 90
تاریخ انتشار 2019-11-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023